Author Affiliations
Abstract
1 School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
2 Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
3 Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
High-resolution multi-color printing relies upon pixelated optical nanostructures, which is crucial to promote color display by producing nonbleaching colors, yet requires simplicity in fabrication and dynamic switching. Antimony trisulfide (Sb2S3) is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases, which holds the key to color-varying devices. Herein, we proposed a dynamically switchable color printing method using Sb2S3-based stepwise pixelated Fabry-Pérot (FP) cavities with various cavity lengths. The device was fabricated by employing a direct laser patterning that is a less time-consuming, more approachable, and low-cost technique. As switching the state of Sb2S3 between amorphous and crystalline, the multi-color of stepwise pixelated FP cavities can be actively changed. The color variation is due to the profound change in the refractive index of Sb2S3 over the visible spectrum during its phase transition. Moreover, we directly fabricated sub-50 nm nano-grating on ultrathin Sb2S3 laminate via microsphere 800-nm femtosecond laser irradiation in far field. The minimum feature size can be further decreased down to ~45 nm (λ/17) by varying the thickness of Sb2S3 film. Ultrafast switchable Sb2S3 photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption, camouflaging surfaces, anticounterfeiting, etc. Importantly, our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
tunable color displays Fabry-Pérot cavity resonators color printing chalcogenide materials 
Opto-Electronic Advances
2024, 7(1): 230033
作者单位
摘要
1 流体动力基础件与机电系统全国重点实验室,浙江大学机械工程学院,浙江 杭州 310027
2 极端光学技术与仪器全国重点实验室,浙江大学光电科学与工程学院,浙江 杭州 310027
3 萨本栋微米纳米科学技术研究院,厦门大学机电工程系,福建 厦门 361102
柔性微纳传感器的新兴发展对先进制造技术提出了更高要求。其中,激光融合制造充分集成激光增材、等材、减材加工形式,凭借高精度、非接触、机理丰富、灵活可控、高效环保、多材料兼容等特点突破了传统制造在多任务、多线程、多功能复合加工中的局限,通过激光与物质相互作用实现跨尺度“控形”与“控性”,为各类柔性微纳传感器的结构-材料-功能一体化制造开辟了新途径。本文首先分析激光增材、等材与减材制造的技术特点与典型目标材料,展示激光融合制造的技术优势,接着针对近年来激光融合制造在柔性物理、化学、电生理与多模态微纳传感器中的典型应用展开讨论,最后对该技术面临的挑战以及未来发展趋势进行了总结与展望,通过多学科交叉互融,开辟柔性微纳传感器制造新路径,拓展激光制造技术的应用场景。
激光融合制造 激光-物质相互作用 微纳制造 柔性电子 柔性微纳传感器 
中国激光
2024, 51(4): 0402403
Author Affiliations
Abstract
1 Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361102, China
2 School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
3 Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices. Here, sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradiation in far field. By varying laser fluence and scanning speed, nano-feature sizes can be flexibly tuned. Such small patterns are attributed to the co-effect of microsphere focusing, two-photons absorption, top threshold effect, and high-repetition-rate femtosecond laser-induced incubation effect. The minimum feature size can be reduced down to ~30 nm (λ/26) by manipulating film thickness. The fitting analysis between the ablation width and depth predicts that the feature size can be down to ~15 nm at the film thickness of ~10 nm. A nano-grating is fabricated, which demonstrates desirable beam diffraction performance. This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
non-linear effect microsphere femtosecond laser far field 
Opto-Electronic Advances
2023, 6(6): 230029
Author Affiliations
Abstract
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
Meta optics-empowered vector visual cryptography at the abundant degrees of freedom of light and spatial dislocation can open an avenue for optical information security and anti-counterfeiting with a compact footprint and rapid decryption.
Opto-Electronic Advances
2023, 6(5): 230073
Author Affiliations
Abstract
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
Nonlinear optics is an important research direction with various applications in laser manufacturing, fabrication of nanostructure, sensor design, optoelectronics, biophotonics, quantum optics, etc. Nonlinear optical materials are the fundamental building blocks, which are critical for broad fields ranging from scientific research, industrial production, to military. Nanoparticles demonstrate great potential due to their flexibility to be engineered and their enhanced nonlinear optical properties superior to their bulk counterparts. Synthesis of nanoparticles by laser ablation proves to be a green, efficient, and universal physical approach, versatile for fast one-step synthesis and potential mass production. In this review, the development and latest progress of nonlinear optical nanoparticles synthesized by laser ablation are summarized, which demonstrates its capability for enhanced performance and multiple functions. The theory of optical nonlinear absorption, experimental process of laser ablation, applications, and outlooks are covered. Potential for nanoparticle systems is yet to be fully discovered, which offers opportunities to make various types of next-generation functional devices.
nonlinear optics nanoparticles optical limiting saturable absorption laser ablation 
Opto-Electronic Science
2022, 1(5): 210007
Author Affiliations
Abstract
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576
As a noncontact strategy with flexible tools and high efficiency, laser precision engineering is a significant advanced processing way for high-quality micro-/nanostructure fabrication, especially to achieve novel functional photoelectric structures and devices. For the microscale creation, several femtosecond laser fabrication methods, including multiphoton absorption, laser-induced plasma-assisted ablation, and incubation effect have been developed. Meanwhile, the femtosecond laser can be combined with microlens arrays and interference lithography techniques to achieve the structures in submicron scales. Down to nanoscale feature sizes, advanced processing strategies, such as near-field scanning optical microscope, atomic force microscope, and microsphere, are applied in femtosecond laser processing and the minimum nanostructure creation has been pushed down to ~25 nm due to near-field effect. The most fascinating femtosecond laser precision engineering is the possibility of large-area, high-throughput, and far-field nanofabrication. In combination with special strategies, including dual femtosecond laser beam irradiation, ~15 nm nanostructuring can be achieved directly on silicon surfaces in far field and in ambient air. The challenges and perspectives in the femtosecond laser precision engineering are also discussed.
Ultrafast Science
2021, 1(1): 9783514
Author Affiliations
Abstract
Holography, with the capability of recording and reconstructing wavefronts of light, has emerged as an ideal approach for future deep-immersive naked-eye display. However, the shortcomings (e.g., small field of view, twin imaging, multiple orders of diffraction) of traditional dynamic holographic devices bring many challenges to their practical applications. Metasurfaces, planar artificial materials composed of subwavelength unit cells, have shown great potential in light field manipulation, which is useful for overcoming these drawbacks. Here, we review recent progress in the field of dynamic metasurface holography, from realization methods to design strategies, mainly including typical research works on dynamic meta-holography based on tunable metasurfaces and multiplexed metasurfaces. Emerging applications of dynamic meta-holography have been found in 3D display, optical storage, optical encryption, and optical information processing, which may accelerate the development of light field manipulation and micro/nanofabrication with higher dimensions. A number of potential applications and possible development paths are also discussed at the end.
Opto-Electronic Advances
2021, 4(11): 210030-1
Author Affiliations
Abstract
1 Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
2 Department of Electrical and Computer Engineering, National University of Singapore, Engineering Drive 3, Singapore 117576, Singapore
Opto-Electronic Advances
2021, 4(7): 07200088
Author Affiliations
Abstract
1 Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
2 State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
Bioinspired superhydrophobic surfaces have attracted many industrial and academic interests in recent years. Inspired by unique superhydrophobicity and anisotropic friction properties of snake scale surfaces, this study explores the feasibility to produce a bionic superhydrophobic stainless steel surface via laser precision engineering, which allows the realization of directional superhydrophobicity and dynamic control of its water transportation. Dynamic mechanism of water sliding on hierarchical snake scale structures is studied, which is the key to reproduce artificially bioinspired multifunctional materials with great potentials to be used for water harvesting, droplet manipulation, pipeline transportation, and vehicle acceleration.
biomimetic hierarchical micro/nanostructures directional superhydrophobicity anisotropic friction 
Opto-Electronic Advances
2021, 4(4): 04210008
Author Affiliations
Abstract
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
In this work, we propose a novel approach to produce three-dimensional (3D) optical trapping with sub-wavelength size through an engineered microsphere, under linear polarization states of an incident light. The engineered microsphere is designed to contain the segmented regions of diffractive patterns and made by focused ion beam fabrication. We simulate and experimentally characterize the focus performance of the engineered microsphere. The emitted light field from the exit surface of the engineered microsphere forms a pair of axially arranged focused beams, and they are connected with a continuous optical field embracing a 3D optical null at the center, forming the so-called optical bottle beam. Experimental results and numerical simulation are in good agreement. Such micro-optics can be used for precise and localized optical trapping.
Photonics Research
2021, 9(8): 08001598

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!